If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+59
We move all terms to the left:
(H)-(-16H^2+59)=0
We get rid of parentheses
16H^2+H-59=0
a = 16; b = 1; c = -59;
Δ = b2-4ac
Δ = 12-4·16·(-59)
Δ = 3777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3777}}{2*16}=\frac{-1-\sqrt{3777}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3777}}{2*16}=\frac{-1+\sqrt{3777}}{32} $
| Y=2x^2+6x+12 | | 83z=4.1z+10.5 | | 2x+10=5x40 | | 30=14+0.4x | | 3x^2-7.0x+0.4375=0 | | x^2+72=-15x | | (9x+2+133)=180 | | 5/4(4x-10)=7.5 | | (8x-9)+(6x+1)=180 | | (5x-14)+(4x+4)=180 | | (5x-10)+(6x+3)=180 | | (4x-4)+(5x-29)=180 | | 9x+48=12x+30 | | (10x-10)+(5x+10)=180 | | 9x+48+12x+30=180 | | (6x-3)+(7x-24)=180 | | 3+4=5(2x-7) | | (x-25)+(4x+10)=180 | | (4x-6)+(4x+10)=180 | | 9x+48+12x+30=189 | | -21+12d=2(d-3)+22 | | 10r/3-1.5=14.5 | | 4(x-9)-10=25 | | 131-2x=6x+67 | | 200m-125+48250=50000-175m | | 9j-4.5+6j=3(5j-1.5 | | 3x+16=5x-55 | | m-4/3-3m/5=1 | | 4-4x=32 | | 0=x^2-22x+84 | | 18x+7=19+1 | | Y=-16x^2+84x |